Left vs right representations for solving weighted low-rank approximation problems

نویسندگان

  • Ivan Markovsky
  • Sabine Van Huffel
چکیده

The weighted low-rank approximation problem in general has no analytical solution in terms of the singular value decomposition and is solved numerically using optimization methods. Four representations of the rank constraint that turn the abstract problem formulation into parameter optimization problems are presented. The parameter optimization problem is partially solved analytically, which results in an equivalent quadratically constrained problem. A commonly used re-parameterization avoids the quadratic constraint and makes the equivalent problem a nonlinear least squares problem, however, it might be necessary to change this re-parameterization during the iteration process. It is shown how the cost function can be computed efficiently in two special cases: row-wise and column-wise weighting. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Low Rank Approximation of Weighted Data Sets

In this paper we propose a fast and accurate method for computing a regularized low rank approximation of a weighted data set. Unlike the non-weighted case, the optimization problem posed to obtain a low rank approximation for weighted data may have local minima. To alleviate the problem with local minima, and consequently to obtain a meaningful solution, we use a priori information about the d...

متن کامل

Greedy Bilateral Sketch, Completion & Smoothing

Recovering a large low-rank matrix from highly corrupted, incomplete or sparse outlier overwhelmed observations is the crux of various intriguing statistical problems. We explore the power of “greedy bilateral (GreB)” paradigm in reducing both time and sample complexities for solving these problems. GreB models a lowrank variable as a bilateral factorization, and updates the left and right fact...

متن کامل

Weighted Low-Rank Approximations

We study the common problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low-rank approximation problems, which, unlike their unweighted version, do not admit a closedform solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstrate the utility ...

متن کامل

Generalized Low-Rank Approximations

We study the frequent problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low rank approximation problems, which, unlike simple matrix factorization problems, do not admit a closed form solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstra...

متن کامل

A Fuzzy TOPSIS Method Based on Left and Right Scores

  Multiple criteria decision making (MCDM) problem is one of the famous different kinds of decision making problems. In more cases in real situations, determining the exact values for MCDM problems is difficult or impossible. So, the values of alternatives with respect to the criteria or / and the values of criteria weights, are considered as fuzzy values (fuzzy numbers). In such conditions, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005